主成分分析

通常高通量数据中含有很多变量,主成分分析是一种数据降维方法,利用正交变换把原始的可能相关的变量转换为一组正交新变量, 提取数据中重要的特征,去除不重要的特征(噪声)。方差越大,表示的特征信息越多,的选择方差最大的方向,去除方差较小的方向。

矩阵分解

对于方阵\(A\)和非零向量\(x\), 如果\(Ax = \lambda x\),表征矩阵\(A\)乘以向量\(x\)后不改变向量的值,\(x\)称为特征向量,\(\lambda\)为特征值。特征向量可以看成是构成矩阵的一组基(向量空间),特征值表示这组基的伸缩倍数。 也就是说\((A - \lambda I)x = 0\), 矩阵\(A - \lambda I\)必须是奇异矩阵, …

一路嘿嘿

Bioinformatics, R enthusiast. Thoughts on reasarch, personal experience and other distractions.

Tags

blogdown font ggplot git github github pages Homebrew html hugo icon liner algebra linux machine learning R scholar sublime text 3 tidyverse